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Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superim-
posed on the image, which affects the imaging quality of infrared system seriously. In scene-based
non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the
sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper pro-
poses an improved neural network non-uniformity correction method with adaptive learning rate. On the
one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the
other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed
algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of
image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive
learning rate. Several real and simulated infrared image sequences are utilized to verify the performance
of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only
reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring
in static areas.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Infrared focal plane arrays (IRFRA) imaging system has tremen-
dous value on both military and civilian applications. However, at
present due to the immature manufacturing process, the response
under the same infrared irradiance varies between the different
detection element within an IRFPA. This phenomenon will impose
the fixed pattern noise (FPN) in the infrared image which is called
non-uniformity of IRFRA [1], and the non-uniformity has a serious
impact on the sensitivity and the quality of IRFPA imaging system.
Thus it is very essential to develop an effective non-uniformity cor-
rection (NUC) algorithm to achieve higher quality infrared images.

The NUC algorithm aims to eliminate the unwanted FPN and
recovery the real infrared image. It is generally identified into
two main categories, the reference-based non-uniformity correc-
tion (RBNUC) and the scene-based non-uniformity correction
(SBNUC). RBNUC methods mainly contains two-point correction
and multi-point correction methods [2], and etc. These methods
employ uniform blackbody as reference irradiance sources to cal-
culate the correction parameter. The advantages of these methods
lie in its simplicity and low computational complexity. However,
its correction process must be repeated because of the temporal
drift of the response characteristic parameter of IRFPA. This proce-
dure may also reduce the reliability of the infrared system and
increase its maintenance costs.

On the other hand, the correction parameter of SBNUC usually
depends on the information of the imaging scene, which has highly
application value. Moreover, the non-uniformity is corrected dur-
ing the normal operation of the imaging system, which would
reduce the operation complexity and avoid imaging interruption.
Some SBNUC methods have been proposed over the years, and
these methods can be broadly classified into four categories which
are the statistics based method, the temporal filtering based
method, the registration based method and the optimal estimation
based method. Several typical methods of SBNUC are introduced as
follow.

(1). The Constant statistics (CS) based method [3] assumes that
the temporal mean and variance of each pixel are identical,
however it heavily relies on the scene moving and have to
spend much time to converge.
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(2). The temporal high-pass filtering (THP) based method [4]
sets a high-pass filtering in the temporal domain and the
FPN will be removed due to its low-frequency characteristic.
However, The THP method will remove the static object and
cause serious ghosting artifact. Although the spatial low-
pass and the temporal high-pass NUC methods [5] apply a
solution to solve this problem, the gain of FPN still cannot
been removed. Besides, the cut-off frequency of the spatial
filter and the temporal filter are difficult to determine as
well.

(3). The registration-based method [6,7] considers that different
infrared detection elements should have identical response
when observing the same scene position and the difference
response between them is mainly caused by the FPN. How-
ever the accuracy of registration affects the NUC perfor-
mance seriously. Thus it is hard to employ this approach to
correct the imaging scene with a weak infrared radiation
or less image detail feature.

(4). The optimal estimation based method mainly contains Neu-
ral network based (NN–NUC) [8], Kalman filter based [9,10]
and particle filter based [11], and etc. the NN–NUC based
methods are widely used because of its better adaptively
and noise immunity. However, the traditional NN–NUC
would result in ghosting artifact to the moving object and
image blurring to static scene, which restrict its application.

Considering the drawbacks of the traditional NN–NUC methods,
this paper proposes a novel NUCmethod based on the combination
of an edge-preserve filter and the adaptive learning rate with tem-
poral factor. Several real and simulated infrared sequences are
adopted to test its performance, and experimental results indicate
that this method can correct the non-uniformity effectively with
few FPN residues left. Furthermore, the correction result of this
method could be much closer to the real image.

The remainder is organized as follow. In Section 2, the mathe-
matical model of non-uniformity and Scribner’s NN–NUC algo-
rithm are discussed. In Section 3, an improved method based on
the guided filter to get desired image is proposed. In Section 4,
an adaptive learning rate is introduced to protect static scene. In
Section 5, the proposed algorithm is applied to several real and
simulated infrared image sequences, and the conclusion is given
in Section 6.
Fig. 1. Sketch map of the traditional NN–NUC method.
2. Related work

2.1. IRFPA and fixed pattern noise models

The response of each detection-element in an IRFPA can be
approximated as a linear model, which is widely used and
accepted. The linear model is defined as

xni;j ¼ ani;j � yni;j þ bn
i;j ð1Þ

where n is the frame number, xni;j is the response of the detection-
element (i, j), yni;j is the real infrared radiation received by the

detection-element (i, j), ani;j and bn
i;j are the linear model parameters

respectively. NUC algorithms aim to acquire the real value yni;j by
estimating the correction coefficients from the raw value xni;j.

ŷni;j ¼ Gn
i;j � xni;j þ On

i;j ð2Þ

where ŷni;j is the estimated real radiation value, Gn
i;j ¼ 1=an

i;j and

On
i;j ¼ �bn

ði;jÞ=a
n
ði;jÞ are the NUC gain and offset correction coefficients

respectively.
2.2. Neural network based NUC

In the NN–NUC method, every infrared pixel is treated as a neu-
ron. Through a hidden layer, the pixel can be connected to its sur-
round pixels. By this way, a desired output is estimated by the
mean of the four nearest neighbor pixels and fed back to the upper
layers of the network to calculate the correction coefficient. As the
sense varies, the correction coefficient is updated by the steepest
descent algorithm frame by frame in order to get the optimal cor-
rection result. The sketch map of the traditional NN–NUC method
is indicated in Fig. 1.

In the traditional NN–NUC method, the desired output f ni;j is
estimated by the nearest 4 neighbor pixels.

f ni:j ¼ xni;jþ1 þ xni;j�1 þ xniþ1;j þ xni�1;j

� �
=4 ð3Þ

and the error function F is given by (the frame number and the pixel
location are omitted)

FðG;OÞ ¼ ðG � xþ O� f Þ2 ð4Þ
The steepest descent algorithm is applied to minimize the error

function F and the iteration direction is given by the derivative of F
(G, O)

FG ¼ @F
@G ¼ 2x � ðG � xþ O� f Þ ¼ 2x � ðy� f Þ

FO ¼ @F
@O ¼ 2ðG � xþ O� f Þ ¼ 2ðy� f Þ

(
ð5Þ

In the steepest descent algorithm, the parameters are updated
recursively with a portion of each respective error gradient indi-
cated as follows

Gnþ1 ¼ Gn � 2axðy� f Þ
Onþ1 ¼ On � 2aðy� f Þ

�
ð6Þ

where n is the frame number, a is a small positive parameter which
controls the convergence step size.
3. The improved desired output

In summary, NN–NUC is a kind of iteration process which
reduces the error function based on the feedback of the hidden
layer frame by frame. An accurate desired image can keep the iter-
ation process reducing the error in the right direction, while a
rough would increase the correction errors. The traditional NN–
NUC adopts the mean value of the four neighbor pixels as the
desired output image. Although the mean filter is reasonable in
certain smooth areas, it is not suitable for the infrared image with
many details (i.e. edges). As the mean filter will cause gradient dis-
tortion and lose many detail features where the wrong correction
coefficient would be generated. As the scene varies or the object
moves in the image, the improper correction coefficient cannot
be repaired immediately. As a result, the inappropriate correction
coefficient will cause the ghosting artifact on the corrected image.
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In order to illustrate the influence of the inaccurate desired
image, a simulation experiments is implemented. In this experi-
ment, a clear image sequence with a moving rectangle object is
corrected by the NN–NUC method. A group of experimental result
is shown in Fig. 2. Results indicate the effect of applying different
mean filter window sizes in the NN–NUCmethod. As can been seen
from Fig. 2, the mean filter would seriously decrease the correction
effect, and the bigger the window size is, the worse the correction
effect would achieve.

By analyzing the traditional NN–NUC, one effective way to
decline the ghosting artifact is to acquire a more accurate desired
imaged, especially for the image with strong edges. However both
above mean filter and other linear filter will smooth the details in
the image. The reason is that the filter weight is always the same in
the whole image. Thus, a nonlinear filter, the guided filter, which
could reserve the image details while reduce the FPN is adopted
to solve this problem discussed above.

The guided image filter [12] is a kind of edge-preserve filter
which can adjust the smooth degree based on the local character-
istics of the image. Thus it can distinguish the edge and the smooth
region in the image. By this filter, a desired image Di with accurate
details and less FPN can be gotten form the guidance image Gi by a
local linear transformation

Di ¼ akGi þ bk; 8i 2 wk ð7Þ
where wk is a local rectangle window with size of (2r + 1) � (2r + 1).
ak and bk are the transforming coefficient which could be solved by
minimizing the following cost function

Eðak; bkÞ ¼
X
i2wk

ðakGi þ bk � PiÞ2 þ e � a2k
� �

ð8Þ

where e is a regularization parameter penalizing large ak and Pi is
the original input image. Through the linear range regression algo-
rithm, the linear coefficient ak and bk can be solved as

ak ¼
1
wj j
P

i2wk
GiPi � lk

�Pk

r2
k þ e

ð9Þ

bk ¼ �Pk � aklk ð10Þ
where lk and dk are the mean and the variance of G in the local rect-
angle window wk. wj j is the number of pixel in wk, and �Pk is the
mean of P in wk. In this paper, the mean filter is replaced by the
guided filter.

f ¼ Gr;eðP; GÞ ð11Þ
where operator Gr,e(P, G) represents the guided filter operation, r is
the filter window and e is the fuzzy degree factor, P is the input
image and G is the guided image. In this paper, both P and G are
the original infrared image with FPN. In this case, ak ¼ r2

k=ðr2
k þ eÞ

and bk ¼ ð1� akÞlk. If the image G changes a lot within wk, there
is r2

k � r, so ak � 1 and bk � 0. The filter can preserve most of
Fig. 2. The influence of inaccurate desired image. (a) Raw image, (b) four neighbo
details. If the image G is almost constant in wk, there is r2
k � r,

so ak � 0 and bk � lk. The filter can remove the FPN as same as a
mean filter.

In short, the guided filter can change the filter property based
on the local characteristics of the input image. Thus, a more accu-
rate desired image would be gotten which is helpful to decrease
the effect of ghosting artifacts.
4. Improved adaptive learning rate

The learning rate is another important factor to achieve good
correction results. As mentioned above, the learning rate a which
controls the convergence speed in the Scribner’s NN–NUC is fixed
for the whole image. Generally, a larger a value can provide a faster
convergence speed, while a smaller value can assure better stabil-
ity instead. In the practical application, very small learning rate
values are commonly used, leading to a very slow, but safe,
convergence.

In order to achieve a higher performance, the local spatial stan-
dard deviation is used to measure the error confidence between
the real infrared radiation and the desired image in the article
[13]. In this way, each pixel has an independent adaptive learning
rate aij(n) in the adaptive NUC neural network structure. So the
learning rate could be adjusted specially based on the local infor-
mation to improve the effect of the correction result.

However this method doesn’t consider the movement of the
object or the scene in the image. In the static areas with less detail,
the learn rate would be larger than other places and the larger
learning rate would lead serious image blurring because of the lack
of scene information. While it is reasonable to select a larger learn
rate to boost the correction rate for the moving object. Above all, a
larger learning rate would accelerate the correction speed and
decline the effect of ghosting artifact for the moving area or the
object; a smaller learning has relative steady correction result.
According to the analysis, combining the spatial characteristics
with the movement information at the same time is an effective
way to improve the result of non-uniformity correction. Thus, both
the temporal and the local spatial standard deviation are selected
to improve the adaptive learning rate in this paper.

ai;jðnÞ ¼
k � rT

i;jðnÞ
1þ rS

i;jðnÞ
ð12Þ

where n is the frame number, k is a constant parameter, rS
i;jðnÞ is the

local spatial standard deviation of the input image. rT
i;jðnÞ is the local

temporal domain standard deviation defined as

rT
i;jðnÞ ¼ D fxi;jðnÞ; xi;jðn� 1Þ; . . . ; xi;jðn�mþ 1Þg� � ð13Þ

where m is the temporal parameter, the operator D indicates the
operation of standard deviation.

In this method, the learning rate depends on not only the spatial
information but also the movement information of the scene. As
r filter, (c) 3 � 3 mean filter, (d) 5 � 5 mean filter, and (e) 9 � 9 mean filter.
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the scene varies, the temporal domain standard deviation would
increase. So the moving object will get a larger learning rate, which
could decline the effect of ghosting artifact. By contrast, when the
scene changes slowly or remains static, the temporal domain stan-
dard deviation could maintain the learning rate in a small figure
even zero, thus the correction parameter in this areas would
remain unchanged or change slightly, which could decline the
effect of image blurring and maintain image clear.

In summary, the flow chart of the proposed improved NUC is
indicated in Fig. 3.
5. Experiment results and analysis

In order to indicate the effectiveness of the proposed algorithm
for NUC, a real video sequence obtained by a long-wave uncooled
infrared camera and three simulated sequences obtained in Vivid
track data set are used to test the proposed algorithm. Our exper-
iments evaluate the proposed algorithm and compare it with other
four typical adaptive methods from literatures. These are:

(1). The classic adaptive retina-like non-uniformity correction
(NN–NUC).

(2). The fast adaptive non-uniformity correction (FA–NUC). This
method applies an adaptive step size which adjusts based on
the local spatial standard deviation to control the learning
rate. The fixed global parameter Kalr is set to 0.075.

(3). The bilateral filter based adaptive non-uniformity correction
(BF–NUC) [14]. This method applies the bilateral filter to cal-
culate the desired image. The mask dimension of bilateral
filter, D, is set to 7 and the standard deviation of the spatial
distances and the intensity dissimilarity are set to D/6 and
50/255 respectively.

(4). The total variation approach for adaptive non-uniformity
correction (TV–NUC) [15], this method is a generalization
of former adaptive NUC method based on neural networks.
Comparatively performance of this approach confirms the
adaptive characteristic in our proposed algorithm.

In the proposed algorithm, the guided filter window size r and
fuzzy degree factor e are set to 8 and 0.2 respectively, the time
parameter m is set to 9, and the neighborhood of local spatial is
set to 3 � 3, the gray range of image is set from 0 to 1.
5.1. The real infrared image experimental result and analysis

The first image sequence (200 � 200 pixels) is obtained by a
uncool IRFPA system with a girl waving her hand iteratively in
the sequence. There is a static desk in left bottom corner of the
image. A group of experimental results are shown in Fig. 4.

It can be seen from the original image in Fig. 4(a), the stripe FPN
influences the image quality seriously. The correction result of NN–
NUC is indicated in Fig. 4(c). Compared with other mean filter, the
mean of four neighbor pixels is a compromise approach. Though
FPN in the image cannot be eliminated completely, this method
Fig. 3. Flow chart of the proposed improved desired image.
can keep the image clear with less image blurring and ghosting
artifact. The correction result of FA–NUC is indicated in Fig. 4(d).
It is clear that all the static parts are either removed or distorted.
What’s worse, there is serious ghosting artifact in the moving area,
such as the head and arm. The fast learning rate is utilized to get a
well correction result in this method, and the learning rate
depends on the local spatial standard deviation of the image. In
this test image sequence, the contour of the girl has intense con-
trast with the background and the learning rate is small in this
place, when the people move around, the error correction cannot
be corrected immediately which is the cause of ghosting artifact.

By contrast, the correction results of BF–NUC and TV–NUC are
shown in Fig. 4(e) and (f) respectively. Thanks to the edge-
preserve filter, the bilateral filter and the minimization of total
variation algorithm, the ghosting is suppressed partially. However,
the fixed learning rate restricts the convergence speed and make
the static image blurring. The correction result of the proposed
algorithm is indicated in Fig. 4(b). The stripe FPN is mostly
removed and the ghosting artifact around the girl’s head and arm
cannot be seen any more. The result of the proposed algorithm
has the best visual effect. Besides, all the static area of image is
reserved completely. That is to say, the proposed algorithm can
achieve well performance in subjective view.

5.2. The simulated experimental result and analysis

Due to the lack of public benchmark infrared sequence, in this
section, three simulated sequences obtained in the public Vivid
track data set (pktest01, pktest02 and pktest03, 320 � 256 pixels)
with clear image and various scene are used for the NUC simulated
experiment. In the typical IRFRA sensor, one column of pixels share
the same amplifier and read-out circuit, so one column of pixels
nearly have the same gain and offset FPN. Based on this assump-
tion, a WGN (white Gaussian noise) stripe noise is use to simulate
the infrared imaging non-uniformity, and the simulated FPN pro-
cessing is indicated in Fig. 5. Both the gain and offset simulated
parameter have the same value in column and follow a Gaussian
distribution value in row, respectively.

In this section, two objective indicators are utilized to evaluate
the quality of the correction results.

(1). The roughness (q): the smaller value of roughness represents
the better correction result. This indicator partially reflect
the visual effect of correction result and it is defined as

q ¼ h1 � xk k1 þ h2 � xk k1
xk k1

ð14Þ

where x is infrared image under analysis, h1 ¼ ½1; �1	 is horizontal

mask and h2 ¼ hT
1 is vertical mask. � indicates the discrete convolu-

tion operation; �k k1 indicates L1 norm.
(2). The root-mean-square error (RMSE): the difference between

the corrected image and the real image. This indicator reflect
the accuracy of correction result and it is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm

i¼1
ðyi � xiÞ2

r
ð15Þ

where y is the corrected image and x is the real infrared image, and i
is the i-th infrared pixel,m is the total number of pixel in the image.

A group of experimental results are shown in Figs. 6–8. Though
the roughness is an objective indicator to illuminate the effective-
ness of non-uniformity correction, it cannot reflect the de-ghosting
and de-blurring effectiveness of the correction algorithm, which
because the roughness in the blurring part of the image would
be smaller than the other part. As can be seen from Figs. 6(a), 7
(a) and 8(a), during the former 200 frames, the proposed algorithm



Fig. 4. Image filtering results. (a) Original image, (b) proposed algorithm, (c) NN–NUC, (d) FA–NUC, (e) BF–NUC, and (f) TV–NUC.

Fig. 5. The process of simulated FPN.

Fig. 6. Results of sequence pktest01
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cannot get the smallest value of roughness compared with others.
The reason is that the adaptive learning rate in the proposed algo-
rithm is maintained in a small value in some static parts of the
image where lack moving information, and other algorithms don’t
consider the movement of the object or the scene in the image
which result in image blurring and a smaller roughness. After
400 frames, as the image scene varies, most areas of the image
can get enough moving information. Thanks to the edge-preserve
filter, the proposed algorithm has better capability to remove the
FPN, as it has smaller figures of roughness.

From the RMSE figures, it can be seen that, compare to the other
methods, RESE of the proposed algorithm is the smallest, which
means its corrected result is the best. Moreover, the proposed algo-
rithm has more steady convergence speed and can get more robust
correction results.
. (a) Roughness and (b) RMSE.



Fig. 7. Results of sequence pktest02. (a) Roughness and (b) RMSE.

Fig. 8. Results of sequence pktest03. (a) Roughness and (b) RMSE.

696 R. Sheng-Hui et al. / Infrared Physics & Technology 76 (2016) 691–697
In summary, these above-mentioned results indicate that the
proposed algorithm balances the correction result and the visual
effect, and has better performance of non-uniform correction in
the aspects of both objective evaluation and subjective visual.
6. Conclusions

A useful method of the scene-based non-uniformity correction
in IRFPA imaging system is proposed in this paper. By using an
edge-preserve filter and an adaptive learning rate, the proposed
algorithm can reduce the ghosting artifact of the moving object
and the image burring of the static scene. Experiments with real
infrared and simulated image sequences demonstrate that the pro-
posed algorithm can achieve relative robust convergence speed
and accurate correction result. In the proposed algorithm, the static
area cannot be corrected well enough because of the smaller learn-
ing rate. Due to the lack of scene movement, some denoising meth-
ods may be used to process this area to improve the image quality
in the future work. Moreover, reducing its computational complex-
ity for hardware implementation is another necessary task.
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